


Pythagoras theorem states that a triangle is right

angled IF and only if $\mathbf{H}^2 = \mathbf{O}^2 + \mathbf{A}^2$. **Trigonometry** is a branch of mathematics that studies relationships between lengths and angles of triangles. **Trigonometric ratios** provide these relationships. The following table summarizes these trigonometric ratios or **functions**, as they are also known. As these are ratios, they don't have any units.

Trigonometric ratio		
Name	Ratio	Notation
Sine	Opp/hyp O/H	$\sin(\Theta)$
Cosine	Adj/hyp A/H	$\cos(\Theta)$
Tangent	Opp/Adj O/A	$tan(\Theta)$
Cosecant	Hyp/opp H/O	$\csc(\Theta)$
Secant	Hyp/Adj H/A	$sec(\Theta)$
Cotangent	Adj/Opp A/O	$\cot(\Theta)$

The same concepts can be visualized in a circle of

radius of 1, centered at the origin, called a unit circle. Imagine a point (x, y) on the circle. It starts from the x axis and travels in the counter-clockwise direction (just to keep the angles positive). Imagine that it is covering one full rotation; the central angle (in radians) increases from 0 degrees (0 radians) to 360 degrees $(2\pi \text{ radians})$ after the rotation when the point returns to its starting place on the x axis. The radius joining (x, y) to the origin O that forms angle t with the x axis forms the hypotenuse of the right triangle shown in the figure. The length of the opposite side (blue O) is y units whereas the length of the adjacent side x is x units.

Remember that $\sin t = O/H = y/radius = y/1 = y$ units

 $\cos t = A/H = x/radius = x/1 = x units$