
Supplementary Material 

Mathematical working of Logistic Regression 

• Problem and data 

 

The problem demonstrated is a binary classification problem with two predictor variables  

𝑋 = (𝑋1 , 𝑋2) and two classes 𝑌 = 1,2. 

 

• Construction of decision boundary 

 

The motivation behind Logistic Regression is to use Linear Regression to model the posterior 

probabilities of the two classes. 

i.e.   𝑃(𝑌 =  1 |𝑋 = 𝑥 ) =  𝛽0 +  𝛽𝑇𝑥 

 

But, 0 ≤ 𝑃(𝑋) ≤ 1, for any random variable X and ∑ 𝑃(𝑋) = 1. 

 

To satisfy these conditions, the logistic function is used to model the probabilities. Therefore,  

𝑃(𝑌 =  1 |𝑋 = 𝑥 ) =  
𝑒𝛽0+ 𝛽𝑇𝑥

1 +  𝑒𝛽0+ 𝛽𝑇𝑥
, 

𝑃(𝑌 =  2 |𝑋 = 𝑥 ) =  
1

1 +  𝑒𝛽0+ 𝛽𝑇𝑥
 

So 𝑃(𝑋) belongs to [0,1] and clearly sum to 1. 

 

Calculating the logit function for the data we get, 

 

𝑃(𝑌 =  1 |𝑋 = 𝑥 )

𝑃(𝑌 =  2 | 𝑋 =  𝑥 )
= 𝑒𝛽0+ 𝛽𝑇𝑥 

𝑜𝑟, log (
𝑃(𝑌 =  1 |𝑋 = 𝑥 )

𝑃(𝑌 =  2 | 𝑋 =  𝑥 )
) = 𝛽0 +  𝛽𝑇𝑥 

The linear logit function forms the decision boundary of any Logistic Regression model. 

 

Note: For K > 2 classes, the model can be specified in terms of K-1 logit transformations. In that 

case, the parameter set 𝜃 = { 𝛽10, 𝛽1
𝑇, … , 𝛽(𝐾−1)0, 𝛽(𝐾−1)

𝑇} must be estimated. 

 

Logistic Regression is widely used in applications of a Binary classification problem, where 

only a single linear function is formed and only two parameters have to be estimated. 

 

Note: The logit function models a linear regression with the predictor variables. But there 

doesn’t exist a linear relationship of 𝑃(𝑋) with the predictor variables.  



Estimating the parameters of Logistic Regression 

 In Logistic Regression, we estimate the regression coefficients (𝛽0, 𝛽) using the method of 

Maximum likelihood.  

The basic intuition behind using the method is to estimate 𝛽0, 𝛽 such that the conditional 

Probability for all the observations of Class K = 0 is a number close to 0 and for Class K =1 is a 

number close to 1.  

 

Given 𝑁 observations (𝑥𝑖, 𝑦𝑖), 𝑖 =  1,2,3, … , 𝑁 and two classes 𝑦𝑖 = 1,2.  

The estimates of 𝛽′ = {𝛽0, 𝛽 } can be obtained by maximizing the likelihood function, 

𝓛(𝛽′) =  ∏ 𝑝(𝑥𝑖; 𝛽′)𝑦𝑖

𝑁

𝑖=1 

(1 − 𝑝(𝑥𝑖; 𝛽′))(1−𝑦𝑖), 

where 𝑝(𝑥𝑖; 𝛽′) = 𝑃(𝑌 =  1 |𝑋 = 𝑥𝑖 ; 𝛽′). 

 

The log-likelihood can be written as, 

𝑙(𝛽′) =  ∑{𝑦𝑖 log(𝑝(𝑥𝑖; 𝛽′)) + (1 − 𝑦𝑖) log(1 −  𝑝(𝑥𝑖; 𝛽′))} 

𝑁

𝑖=1

                 

=  ∑{𝑦𝑖  (𝛽′)𝑇𝑥𝑖 − log(1 + 𝑒(𝛽′)𝑇𝑥𝑖)}

𝑁

𝑖=1

 

 

The ML estimates (�̂�0, �̂�) are obtained by maximizing 𝑙(𝛽′) w.r.t 𝛽0, 𝛽. 
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