
Supplementary Material 

Mathematical working of LDA 

 Problem and data 
The problem demonstrated is a binary classification problem (K = 2). 
In this problem, we want to classify an observation containing two predictor variables minorAL 
(X1) and ecc (X2) into two classes. 
So, the response variable 𝑌 can takes two distinct values Kecimen and Besni. 
 
Let the data distribution 𝒇𝒊(𝒙) ∼ 𝑵(𝝁𝒊, 𝚺), 

where 𝑬(𝑿)  =  𝝁𝒊 is a mean vector of 𝒊𝒕𝒉 class with two components and 𝑪𝒐𝒗(𝑿)  =  𝚺 is a 
2x2 covariance matrix.  
By homogeneity assumption, the covariance matrices for LDA are assumed to be equal. 
 

 Constructing LDA decision boundary 

Let 𝜋௜ be the (prior) probability that a randomly selected observation belongs to 𝑖th class. 

𝑃(𝑌 =  𝑖 )  =  𝜋௜  , 𝑖 =  1,2 . 
 
For every observation 𝑥, and predictor variable 𝑋 =  (𝑋1, 𝑋2),  

𝑃(𝑋 =  𝑥 |𝑌 =  𝑖 )  =  𝑓௜(𝑥) , 𝑖 =  1,2  
 
We are interested in finding the posterior probability for any observation belonging to 𝑖th class 

given X ≈ 𝑥. 
 
Using Bayes Theorem, 

𝑃(𝑌 =  𝑖 | 𝑋 =  𝑥 ) =  
𝜋௜𝑓௜(𝑥)

𝜋ଵ𝑓ଵ(𝑥) + 𝜋ଶ𝑓ଶ(𝑥)
 , 𝑖 =  1,2           … (𝑖) 

 
Any observation 𝒙 is classified into a class with higher posterior probability. 
Therefore if, 

𝑃(𝑌 = 1 | 𝑋 =  𝑥 ) > 𝑃(𝑌 = 2 | 𝑋 =  𝑥 ) 
then x is assigned to class 1. 
Implying, 

𝑃(𝑌 =  1 | 𝑋 =  𝑥 )

𝑃(𝑌 =  2 | 𝑋 =  𝑥 )
> 1            … (𝑖𝑖) 

 
Note: The ratio given in (ii) is the probability (odds) of an event occurring over another event 
and is referred to as odds-ratio.  



Formally the multivariate Gaussian density is defined as, 
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Plugging the equation (iii) in (i) and calculating the odds ratio (eqn ii), we get, 
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Taking logarithm (a monotone increasing function) in both sides and calculating the log-odds 
ratio, we get, 
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The above equation can be expressed in the form, 
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The log-odds function is linear in x and describes a line.  
 
Note: The decision boundary of the two classes is the set of points where, 

 𝑃(𝑌 =  1 |𝑋 = 𝑥 ) =  𝑃(𝑌 =  2 | 𝑋 =  𝑥 ) 

𝑜𝑟,      log ቆ
𝑃(𝑌 =  1 |𝑋 = 𝑥 )

𝑃(𝑌 =  2 | 𝑋 =  𝑥 )
ቇ = 0 

 
The linear log-odds function implies that LDA is a linear classifier. 
 
Equivalently, from equation (iii) the decision rule of LDA can be described as,  

𝑮(𝒙) = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌𝜹𝒌(𝒙), 

𝜹𝒌(𝒙) =  𝐥𝐨𝐠 (𝝅𝒌) −  
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Estimating the parameters of LDA classifier 

 In a real-world dataset, we cannot determine the parameters of the Gaussian distribution. 

 The implementation of the algorithm includes the estimation of the parameters of the 
decision rule. 

 The parameters are calculated and estimated using the following rule, 
o Proportion of observations belonging to kth class: 

𝜋ො௞ =
𝑁௞

𝑁
, 𝑘 = 1,2  

o Mean of the observations belonging to that class: 
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o Covariance matrix: 
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The LDA rule classifies to class 1 if 
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