
Supplementary Material 

Mathematical working of LDA 

 Problem and data 
The problem demonstrated is a binary classification problem (K = 2). 
In this problem, we want to classify an observation containing two predictor variables minorAL 
(X1) and ecc (X2) into two classes. 
So, the response variable 𝑌 can takes two distinct values Kecimen and Besni. 
 
Let the data distribution 𝒇𝒊(𝒙) ∼ 𝑵(𝝁𝒊, 𝚺), 

where 𝑬(𝑿)  =  𝝁𝒊 is a mean vector of 𝒊𝒕𝒉 class with two components and 𝑪𝒐𝒗(𝑿)  =  𝚺 is a 
2x2 covariance matrix.  
By homogeneity assumption, the covariance matrices for LDA are assumed to be equal. 
 

 Constructing LDA decision boundary 

Let 𝜋 be the (prior) probability that a randomly selected observation belongs to 𝑖th class. 

𝑃(𝑌 =  𝑖 )  =  𝜋  , 𝑖 =  1,2 . 
 
For every observation 𝑥, and predictor variable 𝑋 =  (𝑋1, 𝑋2),  

𝑃(𝑋 =  𝑥 |𝑌 =  𝑖 )  =  𝑓(𝑥) , 𝑖 =  1,2  
 
We are interested in finding the posterior probability for any observation belonging to 𝑖th class 

given X ≈ 𝑥. 
 
Using Bayes Theorem, 

𝑃(𝑌 =  𝑖 | 𝑋 =  𝑥 ) =  
𝜋𝑓(𝑥)

𝜋ଵ𝑓ଵ(𝑥) + 𝜋ଶ𝑓ଶ(𝑥)
 , 𝑖 =  1,2           … (𝑖) 

 
Any observation 𝒙 is classified into a class with higher posterior probability. 
Therefore if, 

𝑃(𝑌 = 1 | 𝑋 =  𝑥 ) > 𝑃(𝑌 = 2 | 𝑋 =  𝑥 ) 
then x is assigned to class 1. 
Implying, 

𝑃(𝑌 =  1 | 𝑋 =  𝑥 )

𝑃(𝑌 =  2 | 𝑋 =  𝑥 )
> 1            … (𝑖𝑖) 

 
Note: The ratio given in (ii) is the probability (odds) of an event occurring over another event 
and is referred to as odds-ratio.  



Formally the multivariate Gaussian density is defined as, 

𝑓(𝑥) =
1

(2𝜋)
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Plugging the equation (iii) in (i) and calculating the odds ratio (eqn ii), we get, 
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Taking logarithm (a monotone increasing function) in both sides and calculating the log-odds 
ratio, we get, 
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The above equation can be expressed in the form, 
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The log-odds function is linear in x and describes a line.  
 
Note: The decision boundary of the two classes is the set of points where, 

 𝑃(𝑌 =  1 |𝑋 = 𝑥 ) =  𝑃(𝑌 =  2 | 𝑋 =  𝑥 ) 

𝑜𝑟,      log ቆ
𝑃(𝑌 =  1 |𝑋 = 𝑥 )

𝑃(𝑌 =  2 | 𝑋 =  𝑥 )
ቇ = 0 

 
The linear log-odds function implies that LDA is a linear classifier. 
 
Equivalently, from equation (iii) the decision rule of LDA can be described as,  

𝑮(𝒙) = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌𝜹𝒌(𝒙), 

𝜹𝒌(𝒙) =  𝐥𝐨𝐠 (𝝅𝒌) −  
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Estimating the parameters of LDA classifier 

 In a real-world dataset, we cannot determine the parameters of the Gaussian distribution. 

 The implementation of the algorithm includes the estimation of the parameters of the 
decision rule. 

 The parameters are calculated and estimated using the following rule, 
o Proportion of observations belonging to kth class: 

𝜋ො =
𝑁

𝑁
, 𝑘 = 1,2  

o Mean of the observations belonging to that class: 
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The LDA rule classifies to class 1 if 
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